

AFRL-IF-RS-TR-2004-263

Final Technical Report
September 2004

SEMANTIC INTEROPERABILITY MEASURE:
TEMPLATE-BASED ASSURANCE OF SEMANTIC
INTEROPERABILITY IN SOFTWARE
COMPOSITION (TBASSCO)

University of Southern California at Marina del Rey

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K513

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-263 has been reviewed and is approved for publication

APPROVED: /s/

RAYMOND A. LIUZZI
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

STINFO FINAL REPORT

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
SEPTEMBER 2004

3. REPORT TYPE AND DATES COVERED
Final Jun 00 – Sep 03

4. TITLE AND SUBTITLE
SEMANTIC INTEROPERABILITY MEASURE: TEMPLATE-BASED
ASSURANCE OF SEMANTIC INTEROPERABILITY IN SOFTWARE
COMPOSITION (TBASSCO)

6. AUTHOR(S)
Ke-Thia Yao, Robert Neches,
In-Young Ko, and Robert MacGregor

5. FUNDING NUMBERS
C - F30602-00-2-0610
PE - 62301E
PR - DASA
TA - 00
WU - 12

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California at Marina del Rey
Information Sciences Institute
4676 Admiralty Way
Marina del Rey California 90292-6695

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-263

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Raymond A. Liuzzi/IFTB/(315) 330-3577/ Raymond.Liuzzi@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
SIM-TBASSCO (semantic Interoperability Measures: Template-Based Assurance of Semantic Interoperability in
Software Composition) addresses a longstanding software engineering goal of assembling software from components.
Conventional approaches support composition up to a point, but cannot handle qualitative considerations in
composition, such as implementation effort, performance, resource requirements, or reliability. SIM-TBASSCO helps
software developers engage in guided, efficient searches and evaluations of the set of alternative system
implementation that can be built with the components available to them. It will let developers evaluate components’
functional and data equivalence compatibility and find pertinent data conversion mappings. During runtime SIM-
TBASSCO helps system administrators monitor and gauge the health of system and enables them to perform dynamic
reconfigurations to overcome bottlenecks/faults while preserving design time constraints.

15. NUMBER OF PAGES
20

14. SUBJECT TERMS
Knowledge Base, Databases, Artificial Intelligence, Software, Information Systems

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

1 Summary ... 1
2 Introduction... 1
3 Methods, Assumptions, and Procedures ... 1
3.1 Testbed application ... 1

3.1.1 GeoWorlds .. 1
3.1.2 GeoTopics ... 3

3.2 Metadata level modeling... 4
3.2.1 Content and structural forms... 5

3.3 Semantically-based service scripting.. 5
3.3.1 Model for representing active document collection scripts .. 6
3.3.2 Script instantiation and execution... 6
3.3.3 Service scripting tool .. 7

3.4 Software Gauges ... 8
3.4.1 Interoperability gauge ... 8
3.4.2 Compatibility gauge.. 9
3.4.3 Insertion gauge.. 10

4 Results and Discussion ... 12
References... 15

 i

List of Figures.

Figure 1 GeoTopics web page displaying the daily top 20 hot topics and hot places (with
 map)……………………………………………………………………………..3

Figure 2 Schema model for representing document collection and service semantics…...4
Figure 3 Schema model for representing active document collection scripts………….…6
Figure 4 Service Scripting Tool…………………………………………………………..6
Figure 5 Compatibility Gauges…………………………………………………………...9
Figure 6 Insertion Gauges………………..……………………………………………...11

 ii

1 Summary
SIM-TBASSCO (Semantic Interoperability Measures: Template-Based Assurance of
Semantic interoperability in Software COmposition) addresses a longstanding software
engineering goal of assembling software from components. Conventional approaches
support composition up to a point, but cannot handle qualitative considerations in
composition, such as implementation effort, performance, resource requirements, or
reliability. SIM-TBASSCO helps software developers engage in guided, efficient
searches and evaluations of the set of alternative system implementations that can be built
with the components available to them. It will let developers evaluate components'
functional and data equivalence compatibility and find pertinent data conversion
mappings. During runtime SIM-TBASSCO helps system administrators monitor and
gauge the health of system and enables them to perform dynamic reconfigurations to
overcome bottlenecks/faults while preserving design time constraints.

2 Introduction
The SIM-TBASSCO project is developing a metadata framework for describing software
components that supports the dynamic assembly and reconfiguration of software systems.
During design-time the framework supports semantic-level gauges that help application
developers to select and combine interoperable software components. This facilitates
rapid composition of semantically validated software architectures as components are
assembled into special-purpose applications. A semantically-based scripting tool helps
users design a data-flow style architecture, and helps users to incrementally modify,
instantiate and test the architecture by allocating correct resources. During runtime, the
framework supports software architecture views that provide visibility into software
systems and that identify control points to adjust their behavior to dynamically and
rapidly respond to faults. Multi-level views offer a greater range of adjustments than any
single level. A system architecture view enables dynamic adjustment of servers: create
additional server to accommodate increased demand, and migrate server from overloaded
host to new host. A dataflow architecture view enables reformulation of an application:
substitute alternative type of service for non-functioning or unavailable service. This
ability to self-monitor and to reconfigure on-the-fly enables self-healing and affords
increased performance.

3 Methods, Assumptions, and Procedures

3.1 Testbed application

3.1.1 GeoWorlds
As a testbed application for this work, we have adopted GeoWorlds, a component-based
Web and geographic information management system. GeoWorlds is in use at US Pacific
Command (USPACOM), where it is used by analysts at the Virtual Information Center,
as well as by USPACOM's Crisis Operations Planning Team. The system is also in use at

 1

Joint Forces Command (JFCOM), where it is currently under consideration by the Joint
Battle Center for deployment throughout JFCOM as an interim capability. End users and
application developers create special-purpose analysis services by drawing on
components in the GeoWorlds system.
At USPACOM GeoWorlds operates both in the unclassified domain as well as on the
classified SIPRNet in the PACOM Crisis Operations Center SCIF. The Crisis Operations
Planning Team is responsible for tracking current events throughout USPACOM’s 13
million square mile region of responsibility, monitoring situations that could potentially
expand into crises requiring US military action, and preparing and maintaining detailed
force deployment plans in anticipation of likely requirements. Its leadership reports to
the USPACOM Deputy Commander in Chief (DCinC) for Operations (J5). The Virtual
Information Center is a matrixed organization underneath PACOM’s Commander in
Chief, serving both the DCinC for Operations and the DCinC for Intelligence (J2). Its
responsibility is to complement the traditional intelligence process with rapid access and
analysis of open source data available over the Internet.

 2

3.1.2 GeoTopics
As a second test-bed application we have developed GeoTopics
(http://www.isi.edu/geoworlds/geotopics/), a HTML-based application build using
GeoWorlds components. Previously, GeoWorlds has relied upon search engines to
retrieve information. But, based upon our experience immediately after the September

F

1
c

igure 1GeoTopics web page displaying the daily top 20 hot topics and hot places (with map)
1th attack search engines are not capable of keeping up with fast changing and
ontinuously developing information. Although most search engines attempted to index

3

http://www.isi.edu/geoworlds/geotopics/

news articles throughout the day, most of the information returned on September 11th are
either not relevant or obsolete. This prompted us to develop GeoTopics (see Figure 1), a
web-based service that directly monitors daily news articles from a number of large, elite
English-language newspaper websites. GeoTopics contributes by helping to identify the
“hot topics,” and the most frequently referenced places, found that day in this very large
collection of reports. The goal is to help users look at what's going on worldwide in either
of two ways: what places are relevant to a topic, or what topics are hot in a place.
GeoTopics provides a second testbed option to the members of the IntelliGauge TIE.
The members still can use the Burma Drug scenario, if they prefer that application.
GeoTopics presents a variety of interesting challenges, as well as points of integration
and collaboration:

• Unlike GeoWorlds, which in some respects may be viewed as a component
framework, GeoTopics is a component application. This application executes
daily to gather news articles over the web and analyzes them. This provides an
opportunity for the runtime members of the IntelliGauge TIE to probe and
monitor the performance of the application.

• GeoTopics gather news articles from newspaper sites over the web, so it is
subject to problems created by network congestions/interruptions and by
overloaded websites (during heavy news days). Currently, GeoTopics simply
throws Java exceptions when these problems occur. Object Services’
Prospector should be an ideal fit in monitoring this kind of Java VM level
problems.

• Some of GeoTopics’ services are executed remotely on distributed servers.
Currently, problems with overloaded servers or unresponsive servers are
ignored. Columbia CHIME’s distributed probe architecture should be an ideal
fit in monitoring this kind of remote server problems.

• With respect to SIM-TBASSCO, GeoTopics offers a new set of problems to
stress the scripting tool , and it offers additional opportunities for developing
new architectural gauges .

3.2 Metadata level modeling
A vision of component-based software development is to provide a repository of software
components for application developers to select from to rapidly build their product. In
order for this vision to work the application developers must have confidence that the
selected components are meaningfully interoperable. Component interface specifications,
such as IDL, do not capture enough information to ensure that the semantic intents are
satisfied during software composition. Here we propose a metadata level model to
capture and reason about this semantics.
The insufficiency of interface-based specification is especially noticeable in the case of
GeoWorlds, where a uniform service component API is adopted, and a common
document collection data structure is used for most of GeoWorlds’ information
management service components. Within GeoWorlds many services can be forced
syntactically together with no compilation error. Although this provides a very flexible
mechanism to combine services, when used incorrectly it may generate run-time
exceptions or strange results.

 4

http://www.isi.edu/geoworlds/geotopics/

3.2.1 Content and structural forms
We have adopted a lightweight, multi-form ontology to present the semantics of
document collections. This model is designed to capture essential aspects of components
that are of interest to the developer, while omitting semantic forms that would prevent the
system from performing quick inference. Based on our experience with GeoWorlds, this
lightweight representation is sufficient for most current Web-based information
management services.
The semantic specification of a document collection can be divided into two forms:
content and structure. The content description represents the contextual meaning of the
collection (e.g., a document collection in which the documents are classified by the major
noun phrases). The structure description characterizes the organization structure (e.g., a
document collection organized in an acyclic graph structure).

Collection
Set

Organization
Structure

inputData 0/1

outputData 0/1
dataElement+

Content

Document
Collection

content 0/1

structure 0/1

Service schemasDocument Collection
schemas

Literal URI

comment 1 uri 1

Literal URI

comment 1 uri 1

Literal URI

comment 1 uri 1

propertyName : Property

Cardinality: * : zero or more
 + : one or more
 1 : exactly one
 0/1: zero or one

Schema : Ontology Schema

Schema : Schema

Analytic
Service

Data
Converter

Visual
Service

Input
Service

subClassOf+

subClassOf+

subClassOf+

subClassOf+

Service

Literal

syntax 1

Service
Instance

serviceRequest 1
typeOf 1

typeOf *

Literal

Data
Type Information

Source
subClassOf+

typeOf * object
Class 1

Literal

name 1

Figure 2 Schema model for representing document collection and service semantics

Domain-specific ontologies are used to discriminate and classify the document collection
content types and organization structures, and service functionalities. A schema model
has been developed to represent the document collection and service semantics in terms
of its content, organization structure, and active relations between other document
collections. Figure 2 illustrates this schema model as an ER (Entity-Relationship)
diagram. Content, Organization Structure, and Service are the top-level ontology schemas
that describe the top concepts in the ontology hierarchies of instantiated schemas, which
we call nodes. Subsumption relations between nodes can be described by subClassOf
property. In the current implementation, Analytic Service, Visual Service, Information
Source, Data Converter, and Input Service are defined as the major service types that are
subclasses of Service.

3.3 Semantically-based service scripting
The Service Scripting Tool allows application developers and end users to combine
multiple services together to perform complex information analyses. This tool provides a
GUI for visually composing a service script by means of a data flow diagram. During the
service scripting time, this tool uses the metadata level model to ensure that users only
select interoperable services to create semantically well-formed scripts. Scripts can either
be concrete (specifying specific services to use) or abstract (using metadata to specify
classes of services to use). Abstract scripts can be dynamically instantiated at run-time

 5

based on components available from local component repositories. This dynamic
instantiation not only allows for adaptation of the script to system environment changes,
but also it allows for adaptation to utilize components newly added to component
repositories.

3.3.1 Model for representing active document collection scripts
The scripting tool requires semantic descriptions that model the behavior of components
it operates on. The model previously described for representing semantics of document
collections and services has been extended to provide a model to represent active
document collection scripts and their instances. Figure 3 shows the ER diagram of this
extended model.

Document
Collection

content 0/1

structure 0/1

propertyName : Property

Cardinality: * : zero or more
 + : one or more
 1 : exactly one
 0/1: zero or one

syntax 1

name 1

Schemas for Template Composition

Schemas for Semantic Descriptions
(Figure 1)

analysisResultOf 0/1

Document
Collection
Instance

Object

object 1

Service

Collection
Set Instance

typeOf 1

dataElement+
marshaledOutput 0/1

Collection
Set

Schema : Ontology Schema

Schema : Schema

dataElement+

typeOf 1

inputData 0/1

outputData 0/1

comment 1 uri 1

marshaledInput 0/1

Figure 3 Schema model for representing active
document collection scripts

When an information service is matched against a set of document collections, the
collections within the set should be bound to the service as marshaled input parameters,
so that the service can be performed by using the data at run-time. Also, when a service is
combined (pipelined) with another service, the output document collections of the first
service should be bound to the input parameters of the second service. marshaledInput
and marshaledOutput properties of Service schema represent such data bindings between
nodes. Using Collection Set Instance schema, which elements are Document Collection
Instance’s, can represent a set of document-collection instances. An analysisResultOf
property in a Collection Set Instance explicitly represents the input-output relationship
between the set and another document-collection set via a service. Each Document
Collection Instance has an object property which points to the physical object that keeps
the content of the document collection.
 A document collection can be a member of multiple I/O data sets and it can participate
within multiple document relations. For example, consider a document collection
composed of Spanish documents and a document collection categorized based on place
names cited in the document contents. These document collections are the results of an
English-to-Spanish translation service and a place name extraction service performed on
an initial document collection.

3.3.2 Script instantiation and execution
An active document collection script can be instantiated by allocating local resources to

 6

the nodes in the script. In a local system, semantic descriptions about the local resource
instances are kept as metadata in a repository. Metadata about a resource instance also
includes some syntactic information such as data types, job request entries, and I/O
parameter ordering. The semantic compatibility measurements (explained at Section 5)
are performed to select semantically compatible local resources for each node in the
script. The process of instantiating a script may require human interaction to resolve
multiple matches of resource instances and syntactic mismatches between nodes.

Figure 4a. Service Scripting Tool (left); b. Compound Interoperability Gauge (right)

As the result of an instantiation, proxies are created to act as clients to invoke the specific
services that are selected to instantiate the script, and to receive the results of these
service instances. Each proxy delegates a resource instance (a document collection or a
service) and keeps information for accessing the local resource. For each functional
semantics, a service proxy is created and for each document-collection set, an ordered-list
(ordered based on the I/O parameters of the corresponding service instance) of document
collection proxies is created. A service proxy keeps precedence relationship between
predecessor and successor proxies and a pointer to the corresponding semantic
description in the script. A document collection proxy maintains a pointer to a document
collection object.
The instantiated script can be executed by running the service proxies in a sequence
governed by the precedence relations. An activated service proxy submits a service
request to the system interface, monitors the job status, and receives the result. In the
current prototype implementation, this service access mechanism is implemented based
on the GeoWorlds' asynchronous service invocation architecture.

3.3.3 Service scripting tool
The active document collection script composer provides GUI-based tools to help users
set up analysis and structuring activities by composing, instantiating and executing
scripts. Figure 4a) shows the script composer window. The upper part displays the

 7

current script including services and connections between them. Given a selection of
nodes in the script, the lower part shows the partial ontology hierarchies that are
semantically compatible with the selected nodes. This lets users see what options are
available to them for adding steps to their analysis.
As described in the previous section, the composer creates proxies and proxy connections
(a directed acyclic graph of control and data flow between proxies) when a script is
instantiated. This enables the system to invoke, monitor and synchronize the services.
Also, with the help of the inference engine, it automatically finds and inserts syntactic
converters (e.g., data type converters) between syntactically mismatched components if
appropriate converters are available. When a script is executed, each node in the graph
displays the status (progress bar and messages) of the service.

3.4 Software Gauges
The metadata level modeling and the service scripting mechanism described in the
previous sections provide the underpinnings for a functional software component
repository. Here we describe a set of software gauges that facilitates the usage and
maintenance of the repository. Our current work supports gauges geared towards three
types of repository users:
 Interoperability gauges for application developers to efficiently search for candidate

components in the script generation process.
 Compatibility gauges for system administrators to adapt scripts to their local system

environments by finding candidate replacement components.
 Insertion gauges for component developers to judge the level of effort required to

insert their component into the repository, and determine the uniqueness of their
component within the repository.

Currently, the main metric the software gauges use is the semantic distance based on
graph distance in the representation we use to model components. Given two data
schemas in a taxonomy hierarchy, this metric determines if one schema subsumes (is the
ancestor of) the other schema. If it does subsume, it determines the graph distance of the
two schemas in terms of their content and structure. Finally the metric returns a value
inversely proportional to the graph distance.

3.4.1 Interoperability gauge
The Service Scripting Tool allows users to script semantically correct service data flow
diagrams. At each step of the service construction process, the tool offers a set of
semantically interoperable services for the user to choose. However, for the
inexperienced user the number of choices can be confusing and overwhelming. To help a
user to make appropriate selection we have implemented a kind of Scripting Gauge called
the Interoperability Gauge. This gauge uses the graph distance metric to rank the services
based on their data compatibility (from output data schema to the input data schema of
the connecting service). This gauge favors more specialized services over more generic
services. For example, the output clusters of the Self-Organizing MAP (SOM) clustering
service can be displayed by a generic hierarchical category visualization tool. However,
there is a 2D SOM map visualization tool designed especially to visualize the clusters.
The Interoperability Gauge ranks the map visualization tool higher than the category

 8

visualization tool.
We have developed several ways to visualize the interoperability gauge results, as shown
in Figure 4a and 4b. We have augmented our service selection panel (bottom left portion
of the Service Scripting Tool panel in Figure 4a by displaying a dial gauge next to each
service choice summarizing its interoperability. The service schema panel (bottom left) is
augmented to display the interoperability level of each input parameter of a particular
service choice. Also, we have developed a ranked list panel that displays the service
choices in order of interoperability, and a pop-up compound gauge (Figure 4b) that
details the individual input parameters with their subsumption relationships.

a) b)

Figure 5 Compatibility Gauges: a) Sorted list of compatible components; b) Compound Gauge

3.4.2 Compatibility gauge
The SIM TBASSCO scripts are design to be portable — scripts generated in one

computing service environment can be shared and executed in another environment.
However, one problem that arises is that services available in the environment where the
script is created may not be available in the execution environment. The Compatibility
Gauge helps by finding potential replacement services. Given a particular service in a
script, the Compatibility Gauge suggests replacement services based on the semantic
closeness of their functionality, input and output.
A replacement service, R, is strictly semantically compatible with a service, S, if both
services have the same functionality AND service R can accept any input that service S
can accept, AND service R generates only outputs that service S can generate. For any
script, a service may be substituted by a strictly semantically compatible service without
semantically affecting that script.
A strictly semantically compatible service is guaranteed to work across all possible
scripts, however this compatibility requirement is overly restrictive if the script is known.
Context-dependent semantically compatible service relaxes this definition by only
requiring the replacement service, R, to accept any input that the predecessor services in
the script can generate, AND to only generate output that the successor services in the
script can accept. In terms of input this means that the replacement service does not have
to accept all the input the original service can accept, as long as we can be sure that in the

 9

context of this script that such inputs will never be generated. In terms of output this
means that the replacement service can generate outputs the original service does not, as
long as we can be sure that the successor services in the script can handle the output.
The compatibility gauge is always used in the context of a script, so we adopt the less
restrictive context-dependent compatibility. For example Figure 5 shows Compatibility
Gauges that are applied to a document classification service, UAZ_NounPhraserExtractor
to find out substitutable components of it. Figure 5a is a sorted list of context-dependent
semantically compatible services of the classification service. The top ranked compatible
services include other phrase-based classification services, such as the place name
extractor, keyword extractor and company name extractor. Figure 5b is a compound
gauge that shows detail compatibility levels (functional and I/O compatibility) of
PlaceNameBasedClassification. However, in the strict semantic compatibility sense the
UAZ_NounPhraserExtractor is unique. It is the only service that can be connected to
UAZ’s SOM clusterer service. If we had used strict semantic compatibility or if there
were a SOM clusterer service attached to the UAZ_NounPhraserExtractor, then there
would be no alternative compatible service available.

3.4.3 Insertion gauge
GeoWorlds supports a library of component services in a framework intended to help
users perform complex information analyses by identifying and applying available
component services. Adding additional components to the system is complex, because of
the number of existing components and the need for the new components to be
interoperable. Component developers need help ensuring that offerings conform to
appropriate service interfaces, and obey input/output data interchange syntax and
semantics.

a) b)

 10

a) b)
c) d)

Figure 6 Insertion Gauges: (a) Compound Insertion Gauge Applied to BBN’s Abstract Query Engine; (b)
Compound Insertion Gauge Applied to Veridian’s Terrain Reasoner; (c) Connectivity Graph for Veridian’s
Terrain Reasoner before adding a converter and visual service; (d) Connectivity Graph for Veridian’s
Terrain Reasoner after adding the converter and visual service

The Service Insertion Gauge indicates how well new components semantically integrate
with existing components in the system, and what other components may be needed to
integrate the system more closely. The initial implementation uses the Interoperability
Gauge to measure how many existing services understand the output of the new service,
and how many existing services are able to generate output that the new services can
accept.
GeoWorlds provides us with a testbed for evaluating the utility and effectiveness of these
tools. Recently, two new components, developed elsewhere, have been added to the
GeoWorlds system. This exercise has provided us with an opportunity to test our
Insertion Gauge.
BBN’s Abstract Query Engine provides a new service that is similar to query engines
already present in GeoWorlds. As such, we would predict that it should score high on
interoperability, since provisions for interfacing with other query engines have already
been implemented. Application of the Insertion Gauge (Figure 6a) yielded a high score,
indicating that insertion would be relatively easy.

 11

Veridian’s Terrain Reasoner offers a service that does not resemble any preexisting
GeoWorlds components. It computes the difficulty of traversing land on foot. Figure 6c
shows the service connectivity graph of the Terrain Reason when it was first introduced
into GeoWorlds. It is an isolated node without any other components connected to it.
Additional converters, input services and viewers are needed to properly invoke it. Figure
6d shows the service connectivity graph after additional interoperable services are added.
However, even with the additional services the Terrain Reasoner still has low degree of
service connectivity, and it is still separated from most of the services. The Insertion
Gauge gives a lower overall score to the Terrain Reasoner, indicating that the effort to
integrate this component into GeoWorlds would be relatively higher, and that
interoperation with other components would be less. On the other hand, the fact that the
Terrain Reasoner adds a service that did not exist previously is reflected in the creation of
its own category within the subsumption hierarchy; this yields a high score for the
“uniqueness” dimension (Figure 6b).

4 Results and Discussion
Technical Accomplishments

• Implemented multi-level architectural views that provide visibility into distributed
software systems and that identify control points to adjust their behavior thereby
enabling dynamic, rapid response to faults.

• Developed dataflow architecture view-based semantic adaptations that reformulate
software applications thereby enabling programmers and advanced end users during
runtime to substitute alternative software services for non-functioning or unavailable
service (92% percent speedup from hours to minutes).

• Developed runtime system architecture view-based transformations that dynamically
adjust server deployments thereby enabling system administrators to create additional
servers to accommodate increased demand, and to migrate servers from overloaded
host to new host (92% percent speed up from hours to minutes).

• Using scripting and semantic gauge technology from Dynamic Assembly for Systems
Adaptability’s (DASADA) SIM-TBASSCO project we were able to quickly develop
the GeoTopics news portal with an estimated 80%-90% speedup over manual
development. Using SIM-TBASSCO scripts, the portal collects and analyzes news
articles from major English language newspapers. The initial GeoTopics application
was created in less than two weeks, and the daily manual labor needed to perform the
news analysis and to maintain the GeoTopics website takes less than 30 minutes.

Integration Accomplishments
• Developed joint collaboration and demonstration scenario for IntelliGauge

Technology Integration Experiment (TIE) using GeoWorlds/GeoTopics as application
test bed

• Developed automatic generation of Acme representation of dataflow architecture view
based upon SIM-TBASSCO scripts thereby enabling other DASADA tools to

 12

interface with GeoWorlds.
• Created Acme system architecture view of GeoWorlds and developed system

transformation APIs thereby enabling Columbia's KX and CMU's Tailor and Armani
tools to automatically balance server loads to improve performance

Defense Impact Accomplishments

• Scripting technology from DASADA’s SIM-TBASSCO project was used to perform
multiple complex analyses in support of intelligence and operations at Pacific
Command (PACOM). These scripts support dynamic assembly of software
components in the GeoWorlds information management environment into programs
that perform special-purpose information management operations on collections of
Web documents

• The use of SIM-TBASSCO-developed gauges to guide the choice of
software components enabled a human expert to rapidly compose GeoWorlds
scripts that combined as many as fourteen software components

• Col. John Cole at PACOM organized five different information collections
within two hours using the GeoSpatialTopicAnalysis script; the same tasks
performed manually would typically take time measured in weeks

• DASADA’s SIM-TBASSCO project successfully installed a version of the
GeoWorlds information management environment that has been enhanced with
scripting technology, at Joint Forces Command (JFCOM) in Norfolk, VA. Analysts at
PACOM and JFCOM are using the DASADA technology to rapidly assemble
information analysis programs from GeoWorlds components

• The GeoWorlds system enhanced by USC ISI SIM-TBASSCO DASADA
technology was evaluated by JFCOM Joint Futures Laboratory, as part of its
Open Source Information Management (OSIM) Limited Objective
Experiments (LOE) initiative, and was recommended for further use at JFCOM

• The JFCOM OSIM LOE endorsement led to the SIM-TBASSCO-
enhanced GeoWorlds system being selected for use and testing in the large-
scale Ultimate Vision ’01 (UV01) exercise. The system was described to
DARPA afterwards as an, “Impressive capability”

• As a consequence of the UV01 assessment, the SIM-TBASSCO-enhanced
GeoWorlds system is currently under consideration by the JFCOM Joint Battle
Center for rapid deployment under its charter to deploy near-term interim
solutions for pressing long-term JFCOM requirements

• The Joint Experimentation Program (J9) at JFCOM is developing support for very
large scale (million-entity) distributed entity-level simulations to enable U.S. military
planners to test and improve military doctrines to ensure that U.S. Forces are used

 13

effectively. Achieving this 20x scale-up from current capabilities is a huge challenge,
which is being addressed by the University of Southern California Information
Sciences Institute's (USC ISI) Joint Experimentation on Scalable Parallel Processors
(JESPP) project, which executes Joint Semi-Automated Forces (JSAF) simulations on
hundreds of interconnected workstations. That effort is profiting from technology
produced by USC ISI's SIM-TBASSCO project under DARPA's Dynamic Assembly
for Systems Adaptability, Dependability, and Assurance (DASADA) program. SIM-
TBASSCO developed "probes and gauges" technology that enables users in real-time
to monitor and visualize the run-time behavior of distributed applications within the
context of the application's architectural connection topology. These have been ported
to JFCOM J9's experimentation environment, where they are used to monitor and
analyze multi-processor simulations involving 256 processors distributed over the
Internet at 3 sites. The probes and gauges allowed multiple remote users from
different locations to instantaneously monitor resource (CPU, memory, network
traffic) usage patterns to quickly diagnose faults and inefficiencies.

 14

References.

In-Young Ko, Ke-Thia Yao, and Robert Neches Dynamic Coordination of Information
Management Services for Processing Dynamic Web Content In Proceedings of The
11th International World Wide Web Conference, May 7-11, 2002, Honolulu, Hawaii,
USA.

Ke-Thia Yao, In-Young Ko, Robert Neches, and Robert MacGregor Semantic
Interoperability Scripting and Measurements In Proceedings of the Working
Conference on Complex and Dynamic Systems Architecture, December 2001, Brisbane,
Australia.
In-Young Ko, Robert Neches, and Ke-Thia Yao A Semantic Model and Composition
Mechanism for Active Document Collection Templates in Web-based Information
Management Systems Electronic Transactions on Artificial Intelligence (ETAI), Vol. 5,
Section D, pp. 55-77, 2001. (Journal version of the Semantic Web paper)

In-Young Ko, Robert Neches, and Ke-Thia Yao Semantically-Based Active Document
Collection Templates for Web Information Management Systems In Proceedings of
the International Workshop on the Semantic Web, September 2000, Lisbon, Portugal.

Ke-Thia Yao, In-Young Ko, Ragy Eleish, and Robert Neches Asynchronous Information
Space Analysis Architecture Using Content and Structure Based Service Brokering
In Proceedings of the Fifth ACM International Conference on Digital Libraries (DL
2000), June 2000, San Antonio, Texas.

Ke-Thia Yao, Robert Neches, In-Young Ko, Ragy Eleish, and Sameer Abhinkar
Synchronous and Asynchronous Collaborative Information Space Analysis Tools In
Proceedings of the International Workshop on Collaboration and Mobile Computing
(CMC’99), September 1999, University of Aizu, Fukushima, Japan.
Robert Neches, Sameer Abhinkar, Fangqi Hu, Ragy Eleish, In-Young Ko, Ke-Thia Yao,
Quan Zhu, and Peter Will Collaborative Information Space Analysis Tools. D-Lib
Magazine, October 1998. ISSN 1082-9873

 15

	Summary
	Introduction
	Methods, Assumptions, and Procedures
	Testbed application
	GeoWorlds
	GeoTopics

	Metadata level modeling
	Content and structural forms

	Semantically-based service scripting
	Model for representing active document collection scripts
	Script instantiation and execution
	Service scripting tool

	Software Gauges
	Interoperability gauge
	Compatibility gauge
	Insertion gauge

	Results and Discussion

